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ABSTRACT

The analysis of multiple correlated two-dimensional (2-D) random signals or mul-

tichannel 2-D signals is described. The emphasis is on estimation (linear prediction)

and modeling of the 2-D random signals. Applications to spectrum analysis and image

processing are considered.
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I. Introduction

This report deals with the analysis of multichannel two-dimensional (2-D) random

signals. The signals are two-dimensional in that the signal is a function of two inde-

pendent variables (n 1 ,n2 ). We say the signals are multichannel since there are possibly

several correlated 2-D signals, perhaps received on different communication channels

that are processed and analyzed together.

One example of a multichannel 2-D signal is the set of images received from a

satellite multispectral scanner. The satellite forms several images of the ground in pixel

registration but corresponding to different frequency bands in the visible and infrared.

One can have four, seven, or even more such channels comprising the multichannel

data.

A more common example of a multichannel 2-D signal is a color image. The signal

is inherently two-dimensional but consists of three registered components representing

red, green and blue intensities or other tristimulus values such as those used in the

NTSC video standard.

Other examples of multichannel 2-D signals can be found in linear arrays when

the sensor measurements are inherently separated along certain channels (for exam-

ple in-phase and quadrature, principal and orthogonal returns of a radar, and in the

measurement of dual polarized radar cross section as a function of space and time for

extended targets. In these examples one can easily imagine multichannel signals that

are higher than two- dimensional.

Although the image processing community has long dealt with multiple correlated

images, [see e.g. Ref. l], this community has for the most part not approached the

analysis from a signal processing point of view. A notable exception is the work by

Hunt and Kubler [2] who seem to have been the first to apply signal-processing methods

to multichannel image restoration. The signal processing community on the other hand
has dealt with the analysis of multidimensional signals but has also largely ignored the

analysis of multiple multidimensional signals. While multichannel 2-D signals can be

regarded as a special case of 3-D signals, multichannel signals have their own special

properties that makes their analysis distinct and in many cases more tractible than the

analysis of 3-D signals in general. Therefore we have chosen to concentrate on these

special signals and study their properties explicitly.

This report is primarily concerned with random multichannel 2-D signals and their

applications. These signals will have properties sometimes similar to multichannel

1-D signals and sometimes more like 2-D signals. We will be concerned here mostly

with topics related to filtering and estimation of these signals; and in particular linear

prediction and its applications.

The remainder of this report is organized as follows. Chapter II deals with the rep-
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reservation of multichannel. 2-D signals and their statistical characterization. Chapter

III focuses on linear prediction and autoregressive (AR) modeling. This forms a basis

for the remainder of the material. Chapter IV discusses spectrum estimation. Model-

based methods for estimating the entire spectral matrix are presented. The estimate

includes the 2-D autospectrum for each channel and the magnitude and phase of the

cross- spectra. Chapter V describes applications of the theory to image processing.

Chapter IV provides a summary and conclusion. Areas for future work are cited there.



II. Statistical Characterization of Multichannel 2-D Random Processes

2.1 Representation of Multichannel 2-D Signals and Systems

2.1.1 Signal Domain Representation

Discrete multichannel 2-D signals (or sequences) will be represented by a vec-

tor quantity x(n 1 ,n 2 )
as illustrated in Fig. 2.1. Each component xK (n x ,n 2 )

of the

vector represents a 2-D signal existing in one of the channels. Note that the vector-

valued nature of the function relates to the fact that the signal is multichannel while

the vector nature of the argument n = {n 1 ,n2 )
relates to the fact that the signal is

multidimensional *

The processing of these signals is analogous to that for other discrete signals. We
will be primarily concerned with linear shift-invariant (LSI) operations that can be

represented by 2-D vector difference equations. In particular an M-Channel 2-D signal

x
(
n

i 5 n 2 ) is transformed to another M- channel 2-D signal by an LSI system represented

by the difference equation

y(tti,n2 ) = - ^2 Ailit y(nx -i'i,n2 —

1

2 ) + Yl Btlt:i x(nx
- £x ,n2 - 12 )

(<i,ia)*(0,0)

(2.1)

where the Aili2 and Btl&2 are M x M matrix coefficients and a and (3 define their

(fixed) regions of support. The system will be recursively computable if there exists an

ordering for processing of the points such that values of the signal y needed to compute

the signal's current value at the point (n 1 ,n 2 )
are always available. Whether such an

ordering exists depends on the shape of the output region a.

The output for a multichannel 2-D system can be equivalently represented by the

2-D convolution operation in either of the forms

CO ,oo

y(n1 ,n2)= ]T H (l x , l2 )x(n x , -lx ,n2
- l2 )

(2.2a)

(.1 ,(.2 = — oo ,
— CO

CO ,co

y(n1) n2)= J2 H(nx -lx ,n2 -4)x(£l5 4) (2.26)

ti t 2 = - CO ,- CO

where H{-,-) is a matrix function representing the 2-D multichannel impulse response.

(Each term H(£ x ,£2 ) in Eq. (2.2) is an M x M matrix.) A 2-D multichannel system

* Although it is tempting to use vector notation for the arguments, this tends to

hide the essential 2-D nature of the signals. Therefore we use the longer but more
explicit notation involving the two indices n x and n 2 .
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will be called a Finite Impulse Response (FIR) system if the support of H(i., m) is finite

and an Infinite Impulse Response (IIR) system otherwise. Clearly for an FIR system

all of the Ai lia in Eq. (2.1) are zero and #(^,4) = Blllrt for {l,,l2 ) G /?•

For purposes of this report, we will be dealing with statistical properties of random

signals. Thus the mean of a signal x(n 1 ,n2 )
is a vector quantity defined by

mI (n 1
,n2 )

= £[x(n 1? n2 )] (2.3)

and the correlation and covariance are M x M matrix functions defined (respectively)

by

R{n
l
,n2 ; m x , m 2 )

= E [x(nj , n2 )x
T (m i , m2 )]

(2.4a)

C{n
l
,n2 \m l

,m2 )
= E (x(n l5 n2 )

- m
se
(n 1 ,n2 ))

(x(m 1 ,m2 )
- mx (m 1 ,m 2 ))

(2.46)

When the random process representing the signal is homogenous or stationary the mean
is constant and the correlation and covariance are functions only of the vector distance

between the points (n
1 ,n2 )

and (m 1 ,m2 ). In this case Eqs. (2.3) and (2.4) become

and

mx =£[x(n 1
,n2 )] (2.5)

R{ki ,k2 ) — E [x(n x , n 2 )x
T
(n x

— k
x
,n2 — k2 )]

(2.6a)

C(klt k2)=-E (x(n l5 n2 ) -ma )
(x(n x

- fcl5 n2 - Ar2 )
- mx )

T
(2.66)

It can be seen from their definition that the correlation and covariance functions have

the following symmetry properties

R(kXl k2 ) =RT {-klt -k2 )

C[k x ,k2 )
= C [

— k 1 ,—k2 )

(2.7a)

(2.76)

When a stationary random signal is transformed by a linear shift- invariant system,

the statistical characteristics of the output can be expressed in terms of those of the

input by using Eqs. (2.1) and (2.2) and taking expectations. Thus, from (2.1) the

mean satisfies

J2 Ai liamy + J2 Bh,i*

(fi.is)e*

m, m,

or

m,

(
»'

i , » 2 ) € a

(ti,i ? )?Mo,o)

[ * i ,* 3 ) € a

(2.8)
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where
A00 = I (2.9)

The correlation function satisfies the pair of equations

Ry {k1 ,k2)=- Y 4xi.*»(*i-*i»*a-«a)+ Y, Btlt,Rxy {k
l
-l l ,k2 -l2 )

(*i,*,)€a («i.« 3 )e/?

(*i,* s )#(0,0)

(2.10a)

JR,.(Jfci,k) = - ^ 4i<.*».(*i-»i,*a-*a)+ Y B tl , i2 Rx {k 1 -l l ,k2 -l2 )

(t,,i,)go Ui.^ie/?

(<i.*'s)*(0,0)

(2.106)

where the cross correlation is defined by

Rxy {k^k2 )
= R*x {-kl ,-k2)=E[{x{n1 ,n2)-mx ){y(n1 ,n2)-mu )

T
]

(2.11)

Alternate relations, in terms of the impulse response are, from (2.2)

OO , CO \

Y tf(^2)]mx (2.12]

1

1

, 1 3 = — 00 ,
— 00

and

00 , 00 00 , 00

Ry {k,,k2 ) Y Y H{l 1 ,t2 )Rx {k l +Pl -£ 1 ,k2 +p2 -l2 )H
T

{Pi ,p2 )

tl,tl= — CO ,— OO Pl ,Pz= — CO ,
— OO

(2.13)

The relation between the correlation and the cross correlation can also be expressed in

terms of the impulse response as

00 ,00

Ryx {k^k2 )
= Y, H{l 1 ,l2 )Rx {k 1 -t 1 ,k2 -l2 )

(2.14a)

(«!,£,)= -00, -co

and
CO ,00

Ry (k1 ,k2)= Y H{l l ,l2 )Rxy {k l -t l
,k2 -l2 ) (2.146)

£l , (-2= ~ CO ,
— CO

which forms a connection between Eqs. (2.10) and (2.13). Relations analogous to Eqs.

(2.10), (2.11), (2.13), and (2.14) clearly apply to the covariance and are easily derived.

2.1.2 Frequency Domain Representation

When a (deterministic) signal of the form

x(n l5 n2 ) =cz^ l < 2
(2.15)
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is applied to an LSI system, the output (from Eq. 2.2) is given by

y(n 1 ,n2)=Fs ( 2l ,22 )c^ 1 2r (2.16)

where
CO ,00

Hz (
Zi ,z2 )= J2 E{\ x M)z-

P^z-^ (2.17)

t\,ii — — 00 ,— 00

is the z transform of the impulse response and is called the system function . If one

applies Eqs. (2.15) and (2.16) to Eq. (2.1) it can be seen that

\(<i.<a)€a / \li.t 7 ep J

The frequency response of the system is the system function evaluated on the two unit

circles

F.fwx.Wa) =H: (e*",**") (2.19)

Stability of the 2-D multichannel system corresponds to convergence of R, on the unit

circles. Stability thus implies that the frequency response exists for all values of u t
and

Random signals are characterized in the frequency domain by the power spectral

density matrix. This is denned as the 2-D Fourier transform of the correlation function

00 , 00

&(wi,w*)= J2 Rx {ki,k2)e-
3Ulkl e-

3W2k3
(2-20)

fe j , fe J = — OO ,
— OO

The spectral matrix is positive semi-definite and Hermitian. Its off-diagonal terms

represent cross spectra between components of the signal and need not be real. For the

case of a two-channel 2-D signal the matrix can be written as

5x(wi,w2 )
= 5u K,w2 ) S12 (wi,w 2 )

521 (u; 1 ,a;2 ) S22 (wj , u2 )

(2.2i;

The terms S1X and 522 are real and nonnegative and represent the 2-D power spectrum

or autospectrum for each channel while the terms S12 and £"21 represent cross spectra.

Because of the Hermitian symmetry the cross spectra have identical magnitude and

opposite phase. The normalized quantity

2/ \ I^12(W 1 )
W2)|

2
/ 00 s

K [W1 ,U}2)= —- r 2.22)

is the 2-D magnitude squared coherency (MSC) and is frequently used instead of |512
|

to represent the magnitude of the 2-D cross spectrum. Further treatment of the MSC
is given in Appendix A.
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A cross-spectral matrix Sxy (u1 ,u2 ) can also be defined as the Fourier transform

of the cross correlation function

SL,(wi,wa ) = £ *.»(*i.*i)«""
y" 1 * x «' y" 1 * a (2.23)

fc i ,fc 2 = — OO, — OO

Its components represent cross spectra between components of the signal x and com-

ponents of y. This matrix is neither positive definite nor Hermitian. However it shares

a symmetry property with Syx in that

Sxy (wi,w3 )
= S*Z{u lf u2 )

(2.24)

When a signal is transformed by an LSI system, frequency domain expressions for

the output power spectrum and the cross spectrum between input and output can be

obtained. These are derived by taking Fourier transforms of Eqs. (2.13) and (2.14).

The output power spectral matrix has the form

Sy {u)l3 u2 ) = H.„ i'j. ..'VjS.twi ,w2 )H*
T [u x ,w,j (2.25)

while the cross spectral matrices relate to Sx and Sy
through the expression

5yi (wi,cj2 )
= ffB (wi,w2 )SI (w1) w2 )

(2.26a)

5
y (wi,w2 ) = Hw {u l ,u2 )Sxy {u l ,u2 ) (2.266)

and the symmetry relation (2.24).

2.2 Vector Representation of Multichannel 2-D Signals

2.2.1 Signal Vector Representation

Frequently, a multichannel signal is defined over some finite rectangular region of

support. That is, the signal is considered only for < n l < Nx , and < n2 < N2 .

In this case it can be useful to represent the signal as an N1 N2 M-dimensional vector

of the signal values. Two such representations are most useful. In the first, the vector

valued signals at points [nx,^) are lexicographically organized first by row and then

by column into the larger vector. That is, the multichannel 2-D signal is represented

by

x =

Lx

*o

H t -1 J

(2.27a)

where

*m =

*K,o)
x(n l5 l)

-xfri!,^ - 1)

(2.276)



This representation will be called index ordering .

A second type of representation organizes signal component within each channel

by rows and columns and then stacks the components. This representation has the

form

x =

-x 1

IXM J

(2.28a)

where
Y 1"
^0
X™

Ym
1

m = 1,2, . .
.

, m (2.286)

where
ZmK,0)
xm (nt ,i)

n, 0,1 JVi -1 (2.28c)

.xm (n1 ,N2 - 1).

This representation will be called component ordering .

Index and component orderings are related by permutation transformations

x' = Px

x = Pr
x'

(2.29a)

(2.296)

The form of the permutation matrix is illustrated in Fig. 2.2 for N1
= 3, N2 = 4, and

M = 2.

2.2.2 Statistical Characterization of Signal Vectors

The signal vectors previously defined can be characterized by mean vectors and

correlation or covariance matrices . These quantities are defined for index-ordered vec-

tors by

m = E[x]

R = £[xxT
]

K = £[(x-m)(x-m)r
]

(2.30a)

(2.306)

(2.30c)

and for component-ordered vectors by similar expressions with primed variables. From
Eqs (2.29) and (2.30) it can be seen that the index-ordered and component-ordered
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statistics are related by

m' = Pm
R' = PTLPT

K' = PKPT

(2.31a)

(2.316)

(2.31c)

Note that for a stationary random process the vector m will consist of Ni N2 M-
dimensional subvectors equal to the signal mean (see Eq. 2.5). The vector m' will

consist of M-Ni N2 -dimensional subvectors. Each subvector has elements that are all

identical and equal to the mean of the signal in the corresponding channel.

The correlation and covariance matrices for a stationary 2-D random process have

specific structure and symmetry at their various levels of partitioning. These properties

are illustrated in Figs. 2.3 and 2.4. An example showing detailed structure of these

matrices is given in Appendix B.

2.2.3 Linear Transformation of Signal Vectors

Linear transformations on signal vectors can be represented by matrix equation

y = Ax (2.32)

We will consider only index-ordered transformations here since index ordering is more
extensively used in this report. The equivalent matrix for component-ordered transfor-

mation is given by

A' = PAPT
(2.33)

General linear transformations such as this may operate upon the rows, columns, or

channel dimensions of the signal.

Linear transformations corresponding to a LSI filtering operations are represented

by a matrix of the form

H

H(0)

H(l)

H(-l)..

H(0)...

H(JVX -1) H(^-2)

where

H(nx)

H(n lt 0)

%,1)
2T(nlf -l)

#K,o)

LjT(ftlf JVa -1) H{ ni ,N2 -2)

H(-^i + 1)

H(-iy, +2)

H(0)

H{ni ,-N2 +1)
Hin^-Nt +2)

ff(nlf 0)

(2.34a)

(2.346)
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Signal Vector

x=

*o

5vi-i

where x„ =

x(n,.0)

X(n„l)

x(n,,.V
: -l!

Correlation Matrix

R=£xx r =

R{0)

R(-D

R(i)

R(0)

R(AW)
R(.v,-2)

R(-JV
1
+ 1) R(-A>2) . . . R(0)

BLOCK TOEPLITZ WITH
N2M*N2M BLOCKS)

vhwnere

R(^) = J£:x
ri
x

ri

r
_ i _

=

fl(Jfc.O) fl(Jb.l)

fl(fc-.-l) /?(Jb.O)

fl(JUV8-l)

fl(jfc.A',-2)

R[k-N3 -rl) R(k,-N2
-2) . . . R{k.O)

BLOCK TOEPLITZ WITH
M*M BLOCKS)

where

/2()fc
1
,Jb2 )

= i?
r (-i

l!
-Jfc

2 )
= i:[x(n 1) n 2)x

r
(ni-it 1

,n2-it2 )!
[NOT TOEPLITZ)

Fie. 2.3 Correlation matrix for index ordering.
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Signal Vector

x = w here

~.V,-1

where x™ =
—B i

xm (n,.0)

Xmin ltN2-l)

Correlation Matrix

R =Ex x r _

Rj, R 12 . . Ri.v/

R*l R22 R-2M

Rwi RMl ±y-M1 R~MM

-W-V
i-
V

: BLOCKS)

where

R lk = Ex lx k 1=

R[ k

Ri k

nl k pi k
ri _ v »i Tt_ v _•>

rtA',-l

p/ it

[BLOCK TOEPLITZ
WITH A'-> .V, BLOCKS]

where

fti'»£{xix*I._i [TOEPLITZ)n, ** '*• n n — n 1

Fig. 2.4 Correlation matrix for component ordering.
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(The ~ notation has special meaning that will be explained shortly.) When the trans-

formation corresponds to an FIR filter many of the blocks and subblocks in Eq. (2.34)

will be zero; the specific arrangement will depend on the shape of the support region

for the impulse response.

For a system described by a linear difference equation (2.1), one can write

Ay = Bx (2.35)

where the matrices A and B are defined in terms of the coefficient matrices AT
ia

and

Bj
t

analogously to Eqs. (2.34). The output y can then be expressed directly as

-

1

y = A Bx (2.36)

This form of the analysis implicitly assumes zero initial conditions for the difference

equation.

Occasionally it is necessary to convert between one form of channel representation

for the 2-D multichannel signals and another without performing any specific filtering

or signal processing. This would occur for example if the signal x(n 1 ,n2 )
represented

a color image with red, green, and blue components and we wanted to convert the

signal to NTSC form. If the new signals are defined in terms of the old signals by the

transformation

x(n!,n2 ) = rx(ni,n2 )
(2.37)

then the index-ordered signal vector would be transformed according to

x = Tx (2.38)

where T is a N1 N2M by NX
N2M block diagonal matrix. This matrix would contain

N1 N2 nonzero blocks all equal to the signal transformation T.

2.2.4 Reversal Notation

In the analysis of 2-D signals using vector representation, it is sometimes necessary

to deal with vectors and matrices whose components are ordered corresponding to

decreasing values of the signal index rather than increasing values as in Eq. (2.27).

While a reordering of the signal values can be represented by a permutation matrix

operation, it is much clearer to develop explicit notation. The notation to be used

will apply only to index-ordered vectors and matrices. Component-ordered quantities

are less frequently used and do not lend themselves readily to the reorderings that are

considered here.
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The symbol ~ above a vector will correspond to a vector whose first-level partitions

have been organized according to decreasing value of the index.

^JV, -2

*0

(2.39)

where the x„ are defined by Eq. (2.27b). We call this a first index reversal of the

vector. The symbol ~ below a vector will be used to denote a vector whose second

level partitions have been organized according to decreasing index values.

-^1

(2.40)

where
x(n x , N2

- 1)

x(nx , AT

2 - 2)

(2.4i;

x(nx ,0)

We call this a second index reversal of the vector and is occasionally useful. Most

frequently it will be required to use the doubly reversed vector which is denoted by a

double~over the vector:
r
x,

x =

Wi-l
yv x -2

*o

(2.42)

and denotes a vector where both the main blocks and the second level blocks have been

reversed.

Since transformation of a reversed vector usually implies generation of a new vector

with corresponding order, it is most reasonable to define reversals of a matrix as a

reordering about both its rows and columns. Thus a matrix A represents a matrix A
whose first level blpcks or partitions have been reversed along both rows and columns.

Matrices £, and A are defined similarly with reversals about rows and columns of the

inner blocks. Note also that reversal about both rows and columns of a matrix is

equivalent to transposition about both the main and reverse diagonals. This preserves

certain symmetry such as block Toeplitz structure when it exists.

If reversal notation is used, the LSI transformation of Eq. (2.2) can be represented

as

y = Hx (2.43)

15-



where the matrix H is now defined by

H

H(O)

H(-l)
H(l)

H(O)

Hf-^+l) H(-.Y1 +2)

with

H(n!) =

H(ni ,0) H{n ly l)

#(n l5 0)

H{ni ,N2 -l) H{n lt N2 -2)

n(N, -
1)

H(JVk - 2)

H(0)

H{nuN2 -l)
H(nx ,N2 -2)

JEr(nl9 0)

(2.44a)

(2.446)

Reversal notation will also prove to be useful in considering signal models in Chapters

III and IV.

2.3 Separable Multichannel 2-D Signals and Transformations

2.3.1 Separable Signals

The direct product of an L x Q matrix B and aniVxP matrix A is an NL x PQ
matrix

Ban B(Li2 ... B&ip
Ba2 i Ba22 •• Ba2PB®A (2.45)

.BcLtfi B(Ln2 •'• BcLpf p

In general B <g> A is not equal to A <g> B. A number of other properties are given in

Table 2.1 and in Appendix C .

Table 2.1 - Properties of Direct Product

{B ® A) {D® C) =BD®AC

{B <g> A) T =BT ® AT

{B®A)~ l =B~ l ®A~ l

Consider for the moment a single channel 2-D random signal that has the separable

form

x(n 1? n2 )
= xA (nx ) -xB (n2 ) (2.46)

Then if x^ and xB are the vector representations of the signals xA (n x ) and xB (n2 ), a

vector representation of the 2-D signal is given by

x = xB ® x^ (2.47)

- 16-



Now if xA (n : ) and xB (n2 ) are independent random processes with correlation matrices

HA and R fl the correlation matrix for the 2-D signal vector is

~E[xx7

= ^[(xB x5)]®^[(xA x^)]

= RB ®Ra

(2.48)

A similar direct product relation holds for the mean vector and the covariance matrix.

Multichannel 2-D random processes can be separable along the index (n 1 ,n 2 )

directions, between channels, or both. Various cases of separable signals and their cor-

relation matrices are given in Table 2.2 assuming index ordering. The specific structure

of the matrices can be envisioned by comparisons with the matrices in Fig. 2.3.

Table 2.2 - Separable Forms for Multichannel 2-D Signals

Form of Signal Description Form of Correlation

x(n l5 n2 )
= x^jfii) -xB (n 2 )

Product of a 1-D

single-channel

signal and a 1-D

multichannel signal

Rx = RB ® R^

x(nli n2 ) = x(n
1
,n2 )

• c Product of a 2-D

single channel signal

and a M-dimensional

random vector

R^ = Rc <g> Rz

x(n 1 , n2 )
= xA (rii )

• xB [n2 )
• c Product of two 1- D

single channel signals

and a random vector

R x = Rc ® RB ® R.4

Separable structure for the signals when it exists leads to simplifications in the

analysis. For example 2-D problems can be reduced to a pair of 1-D problems. The
implications of separability for linear prediction are described in Chapter III.

2.3.2 Separable transformations

If a linear transformation for a multichannel 2-D signal is completely separable it

can be represented as the direct product of three matrices

T = W ®V ®U (2.49)

- 17-



where U is a Nx X Nx matrix representing transformation along the n l direction, V is an

JV2 x N2 matrix representing transformation along the n2 direction and W is an M xM
matrix representing transformation between channels. If the signal is correspondingly

separable as"

x = c®xB ®xA (2.50)

then the processing of the signal is greatly simplified since

Tx = [Wc) ® {VxB ) <g> {UxA ) (2.51)

However separable transformations are advantageous even if the signal is not separable.

Common examples of separable transformations are the DFT, Hadamard and Walsh

transforms, and the singular value decomposition.

A convenient relation exists between index-ordered and component-ordered sepa-

rable linear transformations. In particular, if the index-ordered transformation is given

by (2.49) then the component-ordered transformation is given by

r = v ® u w (2.52)

A somewhat more concise representation for separable transformations exists. This

involves first representing the multichannel 2-D signal in yet another form, as a NXM X

A^2 matrix

X
X,

Xm -

(2.53)

where Xm is a Nx x N2 submatrix whose elements are the signal xm (n : ,n2 ) in channel

m. It can be verified that with this representation, a separable transformation of the

form

y = (W <g) V (8) U) x (2.54)

leads to a matrix representation Y with blocks

M
Ym =Y,™miUXtV

T

t=l (2.55)

m = 1,2,. ..,M

where wmi are the elements of W . This can be written in a single matrix equation as

Y = (7 <8) W) UXV :

(2.56)
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III. Linear Prediction for Multichannel 2-D Random Processes

3.1 Linear Prediction

3.1.1 Problem Statement

Let x(ni,n2 ) represent a zero-mean stationary multichannel 2-D random signal. The

linear prediction problem is concerned with forming a linear estimate of the signal at the

point {n
l
,n2 ) from other values of the signal in a region a. Specifically we form the

estimate

x(n1 ,n3 ) = - 22 A?^2 X (n i
~ l'i» n2 - t's) (3-1)E

( * i , i 7 ) 6 <*

[M,ij)5*(0,0)

and the prediction error is defined as

e(ni,na) =x(n 1 ,n3 )'—5c(nls n3 ) (3.2)

The matrix coefficients Aj . are chosen to minimize the mean- squared error E < \e[n
l , n2 )\

2
i

The error is generated from the data by the FIR prediction error filter. From Eqs.

(3.1) and (3.2) the difference equation for the filter is

e(ni,ri2) = Yl ^Ti<,x (
n

.i
~ *i» na -*2)

(
3 - 3

)

(«ii«j)6«

with Aoo — ^« Since the filter is FIR, the terms Af
t

also represent the impulse response

and a is the impulse response region of support (see Eq. 2.2a). The correlation function

of the error evaluated at lag (0,0) is the M x M prediction error covariance matrix E e .

That is

E
e
^E[e{n 1 ,n2 )e

T
{n i ,n2 )}

=iZ e (0 t 0) (3.4)

The mean-squared error £ is given by

£ = E [^(n^no)! 2
]
= E [e

T
[n l ,n2 )e{n l ,n2 )]

= *rE £ (3.5)

These quantities are important for the analysis that follows.

3.1.2 Normal Equations

The prediction error filter coefficients and the prediction error covariance are formed

by solving a set of Normal equations . These linear equations follow directly from the

orthogonality principle [4] which states that the error must be orthogonal to the signal

values used in prediction.
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E [x(nj. - t'i,n2 - t 2 )e
r
(^1,^2)] = [O]

(h,»2 ) € <*, (*i**a) 7^ (0,0)

It further follows from Eqs. (3.3), (3.4) and (3.6a)

E [x{n x ,n2 )e
T
(n x ,n2 )]

= E [e(n x ,n2 )e
T
(n x , n2 )]

= E,

These last two equations can thus be written more concisely as

E [x(ri! — «i,n2
— z2 )e

T
(n x ,n2 )]

= E £ (5(^)5 (z 2 )

(*i,*a) 6 a

(3.6a)

(3.66)

(3.7)

3.1.2.1 Rectangular Support

The Normal equations will be developed by using an index-ordered vector representa-

tion for the signal. At first let a be the rectangular region shown in Fig. 3.1. The size of a is

Px x?2 points and L x and L2 can be any values in the range —Px < L x
< 0, —

P

2 < L2 < 0.

Then an index-ordered representation for the signal data that occurs in Eq. (3.3) is needed.

To make the analysis clear, consider the case where L x
— L2 — 0. This is the quarter

plane or first quadrant predictor. The signal data needed in Eq. (3.3) is in the range

n x
— Px + 1 to n 1 and n2 — P2 + 1 to n2 (see Fig. 3.2). Form a vector x„in , as follows

x
tm-Pi + i

rii-Pj + 2

-n 1 -F 1 + t

x{n x
- Px + f , n2 - P2 + 1)

x(n x
- Px + i, n2 - P2 + 2)

x(n x
- P: +i,n2 )

Then Eq. (3.3) can be written in matrix form as

e(n x ,n2 )
= AT x

ni>

where

A =

A (i) =

A (0)

A(i)

_ A(Fx-i:

^tO

AlX

L^, p,-i j

(3.8a)

(3.86)

(3.9)

(3.10a)

(3.106)
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Figure 3.1 A general rectangular region of support cc

for the prediction error filter.
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Figure 3.2 First quadrant predictor
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The Normal equations then follow directly. From Eqs. (3.7) through (3.9) we have

E Xrn*,*
1
'(»i.»a) = E —n i n i

—n \ n 2

E

or

where

—n 1 n 2
—ft 1 ft

'.

RA = S

A = S (3.11)

(3.12)

rgfO) ~

s -

"£
e

"

g(0) =

. .

(3.13a)

3.136)

and the partitioning in Eqs. (3.13) corresponds to that of Eqs. (3.8) and (3.10). Eq. (3.12)

represents the Normal equations. The results for a first quadrant multichannel predictor

are summarized in Fig. 3.3.

Observe that the correlation matrix that occurs when the Normal equations are writ-

ten in the standard form (3.12) is the reverse matrix R and not R (compare Figs. 2.3

and 3.3). This point is not usually appreciated or discussed in the literature on linear

prediction. For the single channel case R and R are both the same; for our multichannel

case it is important to make the distinction.

When L x and L2 of Fig. 3.1 are not equal to zero a similar analysis again leads to

Eq. (3.12). The correlation matrix R is identical to the one for the previous case but the

matrix of filter parameters is defined by

A

A'
1

' -

^(ii + Fi-i;

(3.14a)

(3.146)
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Prediction Equation

t'x=0 t
2
=

:*i,«'a)^(O,0)

Normal Equations

R(0)

R(D

R(-l)

R(0)

R(-P,-l

R(-P,-2

R(P,-1) R(P,-2) . . . R(0)

) A (0) S (0)

) A (l)

A(^l)

where

R{k) =R T [-k) =

R[k,0) R{k.-1) . . R(k-P
2
-1)

R[k,l) R{k,0) . . R{k-P2+2)

R(k,P
2 -l) R(k.P

2
-2) . . . R(k.O)

Al*)„

•Vo

l t.i

l *./\-i

S«°» =

where

fl(*„ Jfe2 )
= .R

r
(-Jfe

l
,-Jfc2)=£[x{ii 1I n,)x

T (n
I
-Jb 1> ii,-4a)] A 00 = I £

f
= £|(x-x)(x-x) r

Fig. 3.3 Equations of linear prediction for first quadrant support.
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The matrix S is similar to Eq. (3.13) but the non-zero block E e
appears in a position

corresponding to the location of the coefficient A00 in the matrix A.

3.1.2.2 Special Forms

The Normal equations for rectangular support can be viewed in the following way.

We have a set of P: x P2 points as shown in Fig. 3.4(a). A correlation matrix R is formed

for the Pl P2 points. The terms of the correlation function appearing in this matrix are

shown in Fig. 3.4(b). The Normal equations for predicting various points in the array all

involve this same matrix R. They differ only in the indexing of the filter coefficients and

in the position of the terms A00 and E £ in the arrays A and S.

The filters for predicting the upper right and upper left points in a rectangular region

of support are called the first quadrant and second quadrant filters. The first quadrant

filter was discussed in detail in the previous subsection. By using properties of the reversal

operation the second quadrant Normal equations can be put in the form of Fig. 3.3. When
this is done it can be observed that the equations although similar have their second level

blocks transposed. Thus the filter coefficients for the first and second quadrant predictors

are not the same. The third and forth quadrant filters for predicting the bottom left and

bottom right points are also distinct. Their Normal equations differ from the Normal

equations of the first and second quadrant filters in that the innermost blocks R(k
x
,k2 )

are replaced by their transposes. This is a difference from the single channel 2-D case

where the first and third and the second and fourth quadrant filters are identical.

A very important form of predictor is the nonsymmetric half plane filter. Although this

filter clearly has non-rectangular support the form of the Normal equations can be derived

from those already considered. The linear prediction problem is depicted in Fig. 3.5. One
can think of the NSHP support region as a rectangular region where \L2 \

points (marked

with x's in Fig. 3.5(a) are missing. The circled point is the one predicted. The Normal
equations for the NSHP can be obtained by starting with the equations for rectangular

support. One then simply drops out filter coefficients corresponding to the "missing" points

and eliminates corresponding rows and columns of the correlation matrix. The required

terms of the correlation function are shown in Fig. 3.5(c). The detailed form of the Normal
equations is given in Fig. 3.6.

A companion NSHP prediction problem is shown in Fig. 3.5(b). While in Fig. 3.5(a)

data is processed from lower left to upper right, in Fig. 3.5(b) data is processed in the

opposite direction. We refer to Fig. 3.5(a) as forward prediction and Fig. 3.5(b) as

backward prediction. The Normal equations for the backward problem can be obtained in

the same manner discussed for the forward problem. If the equations are permuted and

put in the form of Fig. 3.6, they will differ only in that the inner blocks R(k
x , k2 ) appear

transposed.
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Figure 3.4 Linear prediction with rectangular support
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Prediction Equation

T
P,-\ L 7 -P,-l

Normal Equations

R'(0)

R'(l)

R'(-l)

R(0)

R'i-^+i;

R(-P,+2)

R'(Pj-l) Rl?
x

-2)
. . . RiO)

A"<°> S 'Co)

A(D

=

1

( P - I )

where

R'm = R' r (-*) =

#(jfc-I2 )
#(i,-I 2-l]

R(k.-L 2 )

R(k.-U-P,-l) R(k.-L,-P,-2)

fl(Jfc,-L2-P2+l)

fl(Jb,-L2-P2
-«-2)

R(k,0)

A l *' =

l *.i,

^*,£,+l

.4 A.L,-P,-1

jfc#0

an<

R'(0) =

#(0,0)

i?(0,l)

P(0.-1]

#(0.0)

fl(0.L,-P,-l) fl(0.L,-.P,-2)

/?(0.-L 2-P2 -l)

i?(0,-L
2
-L 2-P 2

-2)

P(0.0) l 0.L,-rP,-l

o

S'(°» =

and where all other quantities are denned as in Fig. 3.3.

Fig. 3.6 Equations of linear prediction for NSHP support (forward predictor)
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3.2 Autoregressive Models

If the error process e(n i , n 2 )
produced by linear prediction were white then one could

obtain the original random process by inverse filtering. Specifically, by replacing e{n
1
,n 2 )

by a white noise w and solving Eq. (3.3) for x(n i ,n2 ) we have

x(n1 ,n3)=- Y2 AT
Xii2

x{n l -i y ,n2
- i2 )

+ w(n l5 n2 )
(3.15)

(•ii«j)€a

(ti,«j)94(0,0)

This is the multichannel 2-D autoregressive (AR) model. The white noise has a covariance

E tf
= £[w(n 1 ,n2 )w

r
(n 1 ,n 2 )] (3.16)

Fig. 3.7 illustrates the relation between linear prediction and autoregressive modeling.

While linear prediction uses an FIR filter, AR modeling employs a recursive or IIR filter.

Since the filter coefficients in an AR model satisfy Normal equations identical to those

for linear prediction, there is a temptation to equate the two concepts. The distinction

lies in the fact that linear prediction does not usually produce white noise. When one uses

an AR model to represent an arbitrary random process and sets up Normal equations to

solve for the filter coefficients, one is essentially ignoring the distinction. The justification

for the white noise AR model can lie only in the belief that an AR model of some order is

a close approximation to the true process. For a model with NSHP support it is true that

the AR model becomes a close approximation to any given random process if the order

becomes sufficiently large. This argument follows by generalization of results in Refs. 5

and 6 to the multichannel case.

3.3 Linear Prediction for Separable Problems

When the 2-D multichannel random process is separable, various simplifications result

in the linear prediction problem. Because the correlation matrix is separable (see Section

2.3), the Normal equations (3.12) for linear prediction problems with rectangular support

reduce to a set of lower-dimensional Normal equations. The results for a predictor with

support in the first quadrant are summarized here.

When the correlation within channels is separable from the correlation between chan-

nels the covariance matrix R in (3.12) can be represented as the direct product of a

between-channel covariance matrix Rc and a within-channel covariance matrix Rx . In

this case we can postulate a separable form for the matrices A and S and show that they

provide a solution to the original Normal equations. In particular, we can write

(R c ®RX )(IM ®ax ) = (-^Ze) ®o2

x
lNiN2 (3.17)

where IM is the M x M identity matrix, ax is an iV^A^-dimensional vector whose first

component is 1, and tNlN:i is the Nt N2 -dimensional vector (l, 0,0 . .
.

, 0)
T

. Then (3.17)

implies the two relations

R^i = o2

x
LNyN2 (3.18a)
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Figure 3.7 Linear prediction and AR modeling
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E e
= o2

x TLc (3.186)

Since the solution of (3.12) is unique, this shows that it can be found from (3.18). The

form of (3.17) indicates that each channel has the same filter coefficients a.x and that there

are no between-channel terms. The parameters a x and a2
x are obtained by solving the

Normal equations (3.18a) pertaining to a single channel 2-D problem. Then from (3.18b),

the prediction error covariance for the 2-D multichannel problem is a scaled version of

the between-channel covariance. The scale factor is the single channel prediction error

variance.

Similar results can be obtained if the correlation matrix is separable along the n 1 and

n2 directions. In this case the correlation matrix can be represented by the direct product

of a matrix RB which relates to a 1-D multichannel process along the n 2 direction and

a matrix R 4 representing a 1-D single channel process along the n l direction (see Table

2.2). The postulated solution is of the form

(Rfl tg> R A )
(

A

fl 8> a A )

f 1 - ,

x
-, , I

I-J-S'' 7-
A lN , (3.19)

which implies

Rp A R — —

S

oA

R.a,

(0)

oil

E Pi

(3.20a)

'A *n x
(3.206)

Equation (3.20a) is a set of Normal equations for a 1-D multichannel problem which we
solve for the prediction matrices AB and the prediction error covariance EBl . Equation
(3.20b) represents Normal equations for a 1-D single channel problem that we solve for the

filter parameters aA and the prediction error variance o\ . The solution of these two sets

of Normal equations then allows us to compute the filter coefficients as AB ® a^ and the

error covariance as

Ee =^EPl (3.21)

In the case where the covariance matrix in (3.12) is completely separable, along rows

and columns and between channels, we have R = Rc ® RB <g> RA . Then we are led to the

two 1-D single channel subproblems

o\ iA*NiTLA aiA

Rfl aB = °b LN 2

and the 2-D multichannel parameters are computed from

A — IM
^• 2 ^r 2 R^

(3.22a)

(3.226)

(3.23a)

(3.236)
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The decomposition into lower-order linear prediction problems discussed here would

seem to be restricted to the case where the multichannel 2-D random process is separable.

In actuality, a decomposition of the multichannel 2-D linear prediction problem into lower-

order problems exits in general where there is no separability. This is discussed in the next

section. A difference arises however in that the lower-order subproblem for the general

case involves an expanded multichannel problem. In addition, we are guaranteed in the

separable case, that if the correlation matrix in (3.12) has doubly block Toeplitz structure,

the correlation matrices of each of the subproblems will have Toeplitz or block Toeplitz

structure. In the general case the Normal equations for the subproblems do not all involve

correlation matrices with Teoplitz structure, even if the matrix in (3.12) has the required

doubly block Toeplitz form-

s' Relation Between Multidimensional and Multichannel

Linear Prediction

There is a close relation between single channel 2-D linear prediction problems and

multichannel 1-D linear prediction problems [7]. More general results exist that show

that multidimensional linear prediction problems of any dimension can be decomposed

into a series of 1-D multichannel and single channel linear prediction problems [8]. Some
specific results will be discussed here that show how 2-D multichannel problems relate to

higher order 1-D multichannel problems. These results will be used in the next section

to formulate a method for estimation of the 2-D multichannel model parameters without

explicit prior estimation of the correlation function.

Fig. 3.8 illustrates a multichannel 2-D linear prediction problem with first quadrant

support (a) and the corresponding multichannel 1-D linear prediction problem (b). The
Normal equations for the multichannel 2-D problem are given by Eqs. (3.12), (3.13) and

(3.10). The structure of the equations is further detailed in Fig. 3.3.

In Fig. 3.8(b) the data is regarded as an array of P2M channels of 1-D signals evolving

along the n : direction. The term xn used in the index-ordered representation of the 2-D
data corresponds to the signals in this array of channels. The 1-D P2 M-channel linear

prediction problem can then be written as

*• = - E (

a(t)

)
*.-i (

3 - 24
)

»= i

where x
rt

is the P2 M-dimensional data vector and xn is its estimate. The coefficients a {i)

have the form

at"

ct
{i)

a
{l)

a
{l]

00 "oi • •
• **0,f»j-l

io uii ••• "l,P,-l
(3.25)

a
[i)

a
{i)

ct
{l)
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(b) Multichannel data

Figure 3.8 Multichannel 2-D linear prediction and related multichannel 1-D problem.
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where each block a*, is of size M x M. The a [n) are found by solving the equation

R olPx = R
a i)

a(Fi-l]

(3.26)

where E Pl is the P2M x P2M prediction error covariance and where the correlation matrix

appearing on the left side of (3.26) is the same as that in (3.12). Now post mulitply both

sides of Eq. (3.26) by the term A (0) and compare the result to Eq. (3.12). In view of Eqs

(3.10) and (3.13), Eq. (3.26) will be identical to Eq. (3.12) if we require

EFl A (0) =S (0)
(3.27)

and

0,1,. ..,Pi -1 (3.28)

The foregoing equations show that the multichannel 2-D Normal equations can be

solved by the following steps. First solve the P2 M-dimensional 1-D multichannel problem

(3.26). Since this problem is 1-D, the multichannel Levinson recursion can be employed

to find the coefficient matrices aS
n

^ and the prediction error covariance matrix EPl . Next

solve (3.27) for A (0)
. this is also a set of 1-D Normal equations although the matrix EPl

is not in general Block Teoplitz. Finally find the multichannel 2-D coefficients from (3.28).

Since the multichannel 2-D coefficients are expressed as a product of terms in (3.28),

we have the following interpretation of the multichannel 2-D linear prediction problem.

The multichannel 2-D prediction error can be computed by first predicting the data along

the direction shown in Fig. 3.8(b). This is a 1-D linear prediction problem and results in

a P2 M- dimensional prediction error vector corresponding to the array of P2M channels

shown in the figure. This prediction error is itself filtered in the second direction to

compute the M-dimensional prediction error vector for the 2-D problem. The Normal
equations solved to obtain the filter coefficients for this second linear prediction problem
are represented by (3.27).

This view of multichannel 2-D linear prediction has one further interesting aspect. If

the multichannel Levinson recursion is used to solve (3.26), both forward and_ backward
1-D linear prediction parameters are generated as part of the recursion. By arguments
similar to those presented above, the backward 1-D parameters can be shown to relate

to the coefficients for the second quadrant 2-D filter. Thus an algorithm based on the

multichannel Levinson recursion can be used to solve for both the first and second quadrant
filter coefficients simultaneously. This will be shown to be of particular use for the spectrum
estimation problem considered in Chapter IV.
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3.5 A Direct Method for AR Parameter Estimation

The connection between multidimensional and multichannel linear prediction suggests

a method for estimating the AR model parameters. This method will be called a direct

method since it does not require prior estimation of the correlation function.

Our method capitalizes on the existance of a direct method for solving the 1-D mul-

tichannel linear prediction problem. We will refer to the 1-D method as the multichannel

Burg algorithm since it is based on ideas originally suggested by Burg [9]. Details of the

method however were developed separately by Nuttal [10] and Strand [ll]. The multi-

channel Burg algorithm is described in Appendix D.

In order to apply the multichannel Burg algorithm to 2-D data, the data is first

partitioned into strips along the n 2 direction as shown in Fig. 3.9(a). The strips of width

P2 for an Px x P2 quadrant filter are catenated along the n 1 direction as shown in Fig.

3.9(b). As in the previous section this data is considered to be a 1-D process (in the n
x

direction) with P2M channels. The multichannel Burg algorithm is then used to estimate

forward and backward linear prediction parameters (including the error covariances). This

procedure makes no explicit estimate for the correlation matrix. Discontinuities where the

strips were catenated together are ignored since they represent only a small portion of

the data. The error covariance matrices that are computed as part of the multichannel

Burg procedure are used to form (3.27) and an analogous equation for the backward case.

These equations are solved by conventional methods and the multichannel 2-D parameters

are computed from (3.28) and its analog for the backward case. This completes the 2-D

estimation procedure.
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Figure 3.9 Sectioning data for the direct method of AR parameter estimation
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IV. Multichannel 2-D Spectrum Analysis

4.1 Spectrum Estimation Models

Parametric or model-based approaches to spectrum estimation are based on a

model for the spectrum involving a finite and relatively small number of unknown

parameters. These parameters can be estimated from the data and used in a formula

that gives the spectrum of the model in terms of the parameters.

Autoregressive modeling is one form of spectrum estimation that will be examined

here. A model of the form of Fig. 3.7(b) is used to represent the data. Filter parameters

and the white noise covariance are estimated by the techniques described in Chapter

III. Since the input spectrum is assumed to be that of white noise, a formula based on

Eq. (2.25) can be used to compute the spectrum. If

and the output is assumed to be white noise with constant spectral matrix £ Vy , then

the spectrum estimate is given by

S{ui,w2 ) = H~ 1
{u l ,<jj2 )YiW E'J (wi,w2 )

Note that this results in an estimation of the entire spectrum matrix i.e., all of the

auto spectra and cross spectra at once (see Eq. (2.21)and Appendix A). If desired,

normalized quantities such as the magnitude squared coherence can be computed from

the elements of the spectral matrix (see Eq. (2.22) and Appendix A).

Various spectrum estimates can be obtained by assuming different support for the

AR model. These are discussed below.

4.1.1 Non-symmetric Half Plane Models

Non-symmetric half plane models are a suitable choice for the spectrum estima-

tion since arbitrary 2-D spectra can be factored into sections with infinite extent non-

symmetric half plane support [5]. Although any practical algorithm cannot use infinite

or even very large support regions, nonsymmetric half plane models of moderate size

have proven to give reasonable results for spectrum estimation. An interesting fact is

that it is unnecessary to consider the forward -and backward predictors of Fig. 3.5(a)

and (b) spearately. While these filters have different parameters, the white noise covari-

ance is related such that formula (4.2) gives theoretically identical spectrum estimates.

In subsequent sections of this chapter we examine results of NSHP spectral models of

various orders. The definition of order used for NSHP models is depicted in Fig. 4.1.
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Figure 4.1 Definition of order for NSHP models
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4.1.2 Quadrant Models

AR models with first or second quadrant support are of interest primarily because

of their convenience of computation and estimation of the model parameters. The third

and fourth quadrant filtes, are also distinct but when they are used in (4.2) with their

corresponding white noise covariance they give estimates identical to those of the first

and second quadrant filters. A method for estimating the model parameters directly

from the data without prior explicit estimation of the covariance function was described

in Section 3.5.

It will be seen that first and second quadrant AR models when used individu-

ally give poor estimates of the spectrum of many random processes. Features of the

spectrum such as peaks tend to be displaced in frequency and elongated in one direc-

tion. However a certain combination of the models has proven to give good results

for estimation of spectra in 2-D single channel problems
{
Jackson &: Chien [12] ]. We

propose here a generalization of this method to 2-D multichannel spectrum estimation.

A combined spectrum estimate is computed from

S(Wl ,w2 ) =2(5/

- 1

K,c-2 ) + 5- 1

(o. 1 ,c2 ))

_

(4.3)

where Sj and Sjj are the spectra corresponding to AR models with first and second

quadrant support. From Eqs. (4.3) and (4.2) one can therefore write

H* {u x ,u2 )Y>w\Hi{ui,u2 ) + Hjj (w 1 ,u;2 )E^
1

//
i7// (w 1 ,cj2

)J
(4.4)

In the special case that the noise is normalized so that ^2W = Ylw ~ I ^q. (4.4)

has the simpler form

S(u
x
,u2 )

= 2 ^(wi.WjJFjJWlWj) + ///
/

T

(w 1 ,w 2 )i7// (w
1
,a; 2

)J
(4.5)

This form is analagous to the form proposed by Jackson and Chien for the single channel

case.

4.2 Resolution and Phase Estimation Experiments

(Sinusoids in Noise Background)

Simulated multichannel 2-D random signals consisting of sinusoids with various

relative phases and frequencies in noise backgrounds were generated. This section

presents estimated spectra of these random fields.

4.2.1 Comparison of NSHP and Quadrant Modeling

Here we discuss the estimation of a sinusoid in noise background and compare
the results of NSHP modeling to quadrant modeling. Three numerical examples are

presented which illustrate the results.
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Example 1

This example is concerned with the analysis of spectra for a two-channel

2-D single sinusoid signal with different phase in additive noise. The signals

generated in channels 1 and 2 were

x x (rii , n2 ) = cos(n i w 1 + n2 w2 ) + w x (n x ,n2 )

x2 (n x ,

n

2 ) = cos(n 1 a;3 + n2 c<; 4 + <j>) 4- w2 {n x , n2 )

where w 1 (n l ,n2 )
and w2 (n l5 n2 )

are zero-mean independent white noise sig-

nals. Spectrum estimation results are given for a data set size of 64 x 64,

and a third order NSHP filter. Two cases are considered in this example. In

the first case we suppose that, the two channels have the same frequency, but

different phase

^i = u<2 =-,w3 =w4 = -<p=l radian
j ,

while in the second case, we assume two channels with different frequency and

different phase:

/ 7T 7T \

Wj = u2 = — ,oj3 = cj 4 = — and <p — 1 rad )
,

Fig. 4.2 shows the results for the components of the 2x2 spectrum matrix in the

first case. Only the cross term S12 (u>i ,w2 )
is shown (magnitude and phase) since the

term S21 (ui,oj2 ) is theoretically and numerically identical. The results show a distinct

peak in each of the three components Siy ,
S12 , S22 corresponding to the location of

the sinusoid. The center of the peak is accurately located near (7r/2,7r/2). Although

the phase of the cross spectrum shows various artifacts around the edge of the region

(where the magnitude is small and the phase is that of the noise) the phase at the

location of the sinusoid is accurately estimated.

Fig. 4.3 shows 5(w 1 ,o;2 ) for the second case (different frequency). The power

spectrum estimates of the first and second channels S11 (cj 1 ,oj2 ) as S22 {uj
]
_,u2 ) have a

single-peak at the location of the sinusoid. Although the cross spectra should theoreti-

cally show no presense of sinusoids some small amount of energy is detectable at those

frequencies in the cross spectrum. Similar effects have been observed in 1-D multichan-

nel spectrum estimation and have been attributed to non exact pole-zero cancellations

in the estimate for the cross spectrum [13].

40-



CO

C\J

co

CO co
OJ

—

>.
c
53

c
P.C
v
-

CO

c_
o

CO •

~! •"-».

C 1—
CO

r~r

o
p t-.-

C)
<P P-

,

CT! ry;

p. Zp ^-^-

o
OJ a;

c CO

!0 XI

c
6-i c,

O p
OJ z
p I

- P
0)

•H tw
P tp
co •H
PJ T3

OJ

41-



11
100

60

60 h

40

20

is
j

1 12 !

22
100 r

80

60

40

20 h

21'

Figure 4.3 Estimate of spectra for sinusoids of different frequency
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Example 2:

Two-channel 2-D signals with two sinusoids in additive noise are considered

in this example. The signals in the channels are denned by

x i (
n

i
; nv) — cos(n

1
o;, + n2

<jj2 ) + cos(n
l
uj 3 Tn2 u 4 ) + w l

(n
x
,n2 )

x2 (n l ,n2 )
— cos(n 1 u; 1 + n2 u2 + 4>i) + cos(n 1 u-'3 + n2 u^ + (f>2 )

+ w 2 {n l
,n2 )

The results are presented here for the following data: w
l
(n 1 , n 2 ) and w 2 [n 1 , n2 )

are independent zero-mean white noise signals, the frequencies and phases are

(jj
x
— oj2 — §-,w3 — 0J4 =

f, and (j>i
= 02 — 1 radian and the data set size is

64 x 64.

The power spectrum estimation results for a second order NSHP model are given

in Fig. 4.4. The results are close to the theoretical results. Si 1 (ui ,
(j2 ) and S22 ('^i,'-^2)

shows that the two sinusoids are easily resolved. The estimated amplitudes are unequal,

but this characteristic has been observed in even 1- D AR spectrum estimates. The

cross-spectrum Si2 (<jj i
,oj 2 ) shows the sinusoids resolved and the phase estimate is close

to the true phase of 1 radian.

Example 3:

Three sinuosids in each channel are considered in this example. The location

of the sinusoids is shown in Fig. 4.5. Observe that the phase of the sinusoids

in channel 2 differ from those in channel 1 by 1 radian. The sinusoids are

imbedded in white noise as in the previous examples. Again a data set of size

64 x 64 was used.

Fig. 4.6 shows the results of spectrum estimation using a fourth order NSHP
model. The results show good estimation of the position of the sinusoids in the au-

tospectra and the cross spectra and there is almost no evidence of energy from sinusoids

ujB and ujD appearing in the spectrum of the opposite channel or in the cross spectrum.

The phase of the cross spectrum in the region where the sinusoids are located is nearly

constant with a correct value of 1 radian.

Spectrum estimates for Examples 1 and 2 were also computed using quadrant plane

models. The estimates were based on 2 x 2 regions of support for the first and second

quadrant niters. Fig. 4.7(a) shows the component SXi of the spectral matrix. Results

for S22 are similar. The use of either the first of second quadrant filter alone results in a

spreading of the peak in one direction. The combined estimate (Eq. (4.3)) gives a more
accurate result similar to that of the NSHP model. Fig. 4.7(b) shows the magnitude

and phase estimates for the cross spectrum Sl2 . A similar spreading phenomenon is

observed in the magnitude estimate but the estimation of phase is correct for both the

individual and the combined spectrum estimates.
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Fig. 4.8 shows the spectrum estimate for two sinusoids in white noise corresponding

to Example 2. In this case the phases 4> l and <p 2 were taken to be unequal and given

values of 1.5 and 0.5 radians respectively. The results of this quadrant based model

can be qualitatively compared to the results for the NSHP model of Fig. 4.4. The

placement of the sinusoid along a diagonal shows some characteristics of the quadrant

models. The first quadrant results show a very significant spreading of the peaks along

a direction orthogonal to the line connecting their centers. This is observed in both

the autospectral components and the cross spectra. The second quadrant estimates

show good resolution with little spreading of the peak. However the combined estimate

gives the best results with sharp peaks and with magnitudes more nearly equal than

those observed with the NSHP model. The phase in Fig. 4.8(c) is slowly varying in the

region of the sinusoids for all of the estimates with a correct values of approximately

1.5 and 0.5 radians at the locations of the sinusoids. (Exact values produced by the

combined estimate are 1.42 and 0.57 radians respectively.)

These experiments indicate that the result of spectrum estimation using a single

quadrant model is not generally reliable but the estimate resulting from combining the

two models according to Eq. (4.3) is quite accurate.

4.2.2 Model order, Data Set Size, and Signal-to-Noise

Ratio Experiments

A comprehensive set of experiments was performed to determine performance of

the spectrum estimation procedures as a function of model order, data set size, and

signal-to-noise ratio. The results are briefly summarized here. More detailed descrip-

tion of the results will be reported separately.

The results of the model order and data set size experiments showed that to some

extent the lack of resolution resulting from a small data set size could be compensated

for by choosing a larger model order. There is a limit to this trade-off however since

a larger model has more parameters and thus should require more data to estimate

parameters that are statistically reliable. The experimental observation may be better

restated in the following way. When the data set is large a smaller order model can

produce results that are comparable to a large model.

The case of two sinusoids in noise (Example 2) was repeated for smaller size data

sets using a NSHP model. For a second order filter the results of spectrum estimation

using a 32 x 32 point data set were essentially the same as those using the 64 x 64

point data set reported above. For smaller data sets the results degraded considerably.

However the resolution obtained using a second order NSHP filter on a 16 x 16 point

data set was similar to that obtained with a third order filter on an *8 x 8 point data set.

These results for the cross spectrum are shown in Fig. 4.9. Results for the autospectra

are similar. Note in Fig. 4.9 that although the amplitude of the estimate varies in the

three cases depicted, the phase remains essentially constant.
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The signal-to-noise ratio for sinusoids in noise was defined by

SNR = 10 log lQ
(Jpj

(4.6)

where A is the amplitude of each sinusoidal component and a2
is the white noise

variance (chosen to be the same for each channel). Fig. 4.10 shows results of the cross

spectrum estimation for a 64 x 64 data set with closely spaced sinusoids of frequencies

!Jj l
= oj 2

= 7r/2 and ui
x
= u>2 — ^r- the model used for these experiments was second

order. At a SNR of 12 dB the sinuosids are completely resolved with sharp peaks. At

a SNR of 3.5 dB the peaks begin to merge and at dB the peaks become a single

ridge making it difficult to predict that there are two sinusoids. The phase obtained by

this method however remains essentially constant for all of the signal-to-noise values.

A contour plot of the phase is shown for the dB case again illustrating its slowly

varying character in the region around the two sinusoids.

4.3 Estimation of More General Spectra

This section contains two additional examples of multichannel 2-D spectrum anal-

ysis involving simulated data. These cases were designed to test the accuracy of esti-

mating a linear phase term in the cross spectrum and the ability to estimate parameters

of a known 2-D random process from data. The latter is closely related to the 2-D lin-

ear system identification problem, since a linear system can be identified by driving it

with white noise and then estimating the cross spectrum between input and output.

4.3.1 Estimation of Delay

For this experiment two channels of data were defined by

£1(^1,^2) = w 1 (n 1 ,n2 )

X2 (^i , n2 ) = fix x (n 1
- d l ,n l

- d2 ) + w2 (n x , n2 )

where W1 and W2 are two independent white noise processes. Spectrum estimates were
generated and the slope of the phase of the cross spectrum was measured to estimate

the delays d x and d2 . Fig. 4.11 shows the cross spectrum estimate that was obtained

using a first order NSHP model for white noise term with unit variance and parameter
values of ft = 0.5, d x — d2 = 1. The magnitude of the cross spectrum is constant

and the phase shows a linear dependence with slope corresponding to dx
= d2 =1.

Thus the experimental result agrees precisely with the theory.

4.3.2 Estimation of Parameters for a Linear Model

The goal of this experiment was to estimate the parameters of a known linear

process from records of data generated by the process. The following multichannel 2-D
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process was simulated.

£1(^1, n2 )
0.6 Xi{n x

,n2
- 1)

x 1 (n 1
,n2

- 1)
+

-0.7

0.4

x 1
(n 1

- l,n 2 )

x2 (n 1
- l,n2 )

+
Wi(n l5 n2 )

^2(^1,^2)

where: itft-(rci,n2 )
(s = 1,2) are two independent white noise signals. This process

actually has support only in the first quadrant but a first order NSHP model was used

to test the estimation procedure. For this problem one would expect the two matrix

coefficients A Y ^x and A ix to be small (near zero).

Table 4.1 shows the result of estimating the parameters with a 64 x 64 point

data set. The estimates for the non-zero parameters of the model are close to the

given values, and all of the remaining parameters but one are at least one order of

magnitude smaller. The estimated spectrum components for this process are shown in

Fig. 4.12. Energy is spread over a wide range of frequencies with concentration near

higher values of u^ and lower values of u>2 . This is consistent with the signs of the

terms in the defining equations for the process.

Table 4.1 Estimated parameters for a 1st order NSHP
model for a linear process.

•^0,0 1

1

-<4-o,i -0.56432

-0.60426

-0.027493

-0.036813

A1.-1 0.014809

0.00057926

-0.14316

-0.022275

"1,0 0.054647

-0.012384

0.58588

-0.35247

Axl 0.017226

-0.0-3484

0.01443

0.0055484

4.4 Comparison of Direct and Indirect Methods

The results described in the previous sections were based on algorithms that first

estimate the 2-D matrix correlation function and then solve Normal equations to de-

termine the AR model parameters. These methods will be called indirect since they
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require estimation of the correlation function as a prerequisite to determining the model

parameters. A direct method for estimating the model parameters, i.e., a method that

estimates the parameters directly from the data was described in section 3.5. This

method is very well suited to spectrum estimation using combined first and second

quadrant models since it estimates both sets of filter parameters simultaneously. Al-

though the direct method has not been exhaustively tested on all of the cases reported

earlier, our initial results indicate that its estimates are at least comparable to and in

some cases better than those of the indirect methods.

Figure 4.13 shows the results of estimating a single sinusoid in white noise using

combined 2x2 point quadrant filters. These results are the same as the combined

results shown in Fig. 4.7 but are depicted in a slightly different format. Fig. 4.14

shows the spectrum estimation results for the same data using the direct method of

parameter estimation. The direct method yields a sharper peak with somewhat lower

sidelobes. Estimates of the one radian phase shift between the channels are 1.05 rad.

for the indirect method and 1.03 rad. for the direct method.

Figure 4.15 shows the results for estimating two sinusoids in white noise using com-

bined 3x3 point quadrant filters with parameters estimated by the indirect method.

These results are the same as those shown earlier in Fig. 4.8. Fig. 4.16 shows the

results of the direct method applied to the same data. In this case the results appear

to be nearly equivalent. A few minor peaks appear in both cases. For the indirect

method these peaks appear closer to the main peak while for the direct method they

appear further out. Phase estimates at the peak locations are 1.47 and 0.55 radians

for the indirect method and 1.48 and 0.50 radians for the direct method. The values

produced by the direct method are slightly closer to the true values of 1.5 and 0.5

radians.
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V. Image Processing Applications

This chapter deals briefly with application of the theory of multichannel 2-D signals

to image processing. Three applications are discussed namely, segmentation of color

images, image coding, and image spectrum analysis.

5.1 Image Segmentation

This section describes an algorithm for image segmentation that uses a multichan-

nel 2-D model to represent the images involved. This type of model works best for

images involving multiple textures, such as aerial photographs of the ground in rural

areas.

The application here will be to color or "false color" images (the latter are derived

from images recorded on color infrared film). For these cases the multichannel 2-D

signal has three components (M=3) corresponding to the red, green, and blue video

signals (see Fig. 5.1). The same methods couid be applied to image data from a

multispectral scanning satellite that records data on four, seven, or even more IR

channels. In this case the number of components M would be equal to the number of

channels of scanner data employed.

It is assumed that regions with similar texture are defined by boundaries of corre-

sponding pixels in each of the three color image components and that within each region

the texture is described by a multichannel 2-D AR model. A superimposed Markov
model characterizes the occurance of regions by specifying a form for the probability

that a given pixel belongs to the region given that neighboring pixels belong to the

same or other regions. The combination of the two models has been called a doubly

stochastic image model in analogy with doubly stochastic models occuring in the study

of point processes.

The doubly stochastic image model has been used in conjunction with monochrome
images and single-channel AR models. Since many of the details of the algorithms are

described in our earlier work [14] for monochrome images our description of the method
here will be brief.

5.1.1 Segmentation Algorithm

The image to be segmented is assumed composed of several homogenous regions

of texture. The red, green, and blue intensities are represented by the multichannel

2-D signal*

F\K ,
n2 )

F(n 1 ,n2 )
F2 (n 1 ,n2 )

^3(^1,^2)

(5.1)

We use the notation F to represent an image to adhere to previous convention.
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and within a particular region this signal is generated by the AR model

F'(n 1; n2 )
=]TAt

-

lia F'(n1 -i l ,n2 - i2 ) + W(nl5 n2 )
(5.2a)

* i x i

F(n l5 n2 )
=F'(n 1 ,n2 )

+/x (5.26)

where /x is a constant mean vector. The white noise W(n x
,n2 )

is described by a 3 x

3 spatially invariant covariance matrix

E w = E[W{n 1 ,n2 )WT
{n 1 ,n2 )} (5.3)

which in general is not diagonal. A separate model of this type is formed for each of

the image regions in which there is a different texture.

The essence of the segmentation algorithm is as follows. Using the models (5.2)

and a Gaussian white noise source, we can form a probability density function for the

set of all pixels in the color image conditioned on the regions. Assume that there are

Q regions R x , R 2 ,
. . . , R Q . Since the texture is independent from region to region, this

density function can be written as

Q

p(F\Z 1 ,Z 2 ,...,R Q )
= ]lp(F\Z l ) (5.4)

t= i

where p{F\R
i ) represents the joint density for the pixels contained in region R {

. Now
assume that there is a way to represent the probability of occurence of a particular set

of regions in the image Pr [R 1 , £ 2 , . .
.

, Z Q ]. Then Bayes's rule states that

P(F )

Thus a maximum a posteriori (MAP) estimate for the regions can be obtained if the

Ri are chosen to maximize

p{F\R 1 ,Z 3 ,...Z Q )Pr[Jl l ,Z 2 ,...Z Q }
(5.5)

Since the form of the probability density function for the white noise is known,
the form of the density function for pixels within a given region can be obtained by
transformation. The resulting image probability density function is most conveniently

represented in terms of the errors of linear prediction which can be written as

EK,n2 ) =F'(n1) n3 )
- J^ A^F'^ -i y

,n2 - i2 ) (5.6)
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where the assumed constant mean level is subtracted out prior to applying (5.6). By
using the linear model, the density function for pixels within a region £, can be repre-

sented as

P(F|*.-)= I] P»*. (EK,^)) (5.7)

where pWk is the probability density function for the white noise source of type A;,

within region £,.

Now, suppose that an image has many regions, but that each region contains only

one or another of two texture types. Then choosing a set of regions for the image

is equivalent to labeling the pixels with labels and 1. If an appropriate statistical

model for the labels of the pixels exists then the prior probability Pr \JZ X , R 2 ,
. . . RQ \

can be computed. This is the other ingredient needed to form the MAP estimate. An
appropriate statistical model is one that represents a particular class of 2-D Markov
processes [14, 15]. This model permits calculations of the desired prior probabilities.

Combination of the linear filtering model with the Markov model results in an

algorithm to obtain a MAP region estimate. Since the resulting equations are of high

dimension and nonlinear, a (possibly suboptimal) solution is obtained by iterating the

conditions

B« )(n1 ,fia )]

T
[E. or

1
B«°)(n1> ii

J|)

+Zn|E, |-2/nPr[0|S(ni , n , ) ]

o

<
>
i

B^fih.na)] [E.
1
]- 1

E< 1
>(n1> iia )

+Zn|£Ml |-2/nPr[l|S(ni ,ttl) ]
(5.8)

which are derived from (5.4) through (5.7) and the Gaussian form of the density func-

tion. The terms E (0) (n 1 ,n2 ) and E (1) (n!,n2 )
are the error terms at pixel (ni,n2 )

computed using the filters of type and 1 respectively and EW( is the correspond-

ing white noise covariance. The terms Pr [0|S( ni) „ 3 )]
and Pr [l|S( n !,«,)] are Markov

transition probabilities representing the probability that the pixel at location (n 1 ,n2 )

has label or 1 given that a set of other pixels S( nii „ 3 )
in the neighborhood has a

prespecified set of labels. The inequality provides a rule for assigning pixel labels indi-

vidually based on labels obtained at a previous iteration; the two expressions in (5.8)

are evaluated and the pixel is given a label corresponding to the sense of the inequality.

5.1.2 Experimental Results

Results of applying the segmentation to color images are given here. Fig. 5.2(a)

shows a 128 x 128-pixel color image representing an aerial photograph of the ground

- 71-



(a) color image (b) red component

(c) green component (d) blue component

Figure 5.2 Color image of trees and field,
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in a rural area.* The green textured area is a grove of trees and the predominantly

yellow area is a field with tall grass. Figs. 5.2(b) and (c) and (d) show the red, green,

and blue components of the image. (The blue component is very dark and may not

reproduce well.)

Figure 5.3 shows the results of segmentation of this image. The algorithm used

3-channel 2x2 first quadrant models for each of the two terrain types. The Markov

model used a neighborhood size of 5x5. Note that attempts to segment this image

based on color would have failed because the fields contain large linear patterns of

green. The linear filtering models however match the colored texture in the image and

result in a segmentation, that except for a few isolated pixels, is very accurate.

Figure 5.4(a) shows another color image of trees and a field. This image is some-

what more difficult to segment because the areas of green in the field do not appear as

a linear pattern but are mixed in more homogeneously. Figure 5.4(b) shows the results

of segmentation using image models similar to those used in the other example. Again,

with the exception of some small areas the segmentation is quite accurate.

5.2 Image Coding

The models developed in this report can be applied to the coding of color or other

multichannel images for purposes of storage or transmission. In this application, a

model is formed for the image, the parameters of the model are stored or transmittted,

and the model is used to reproduce the image. Two general schemes appear to be

practical.

The first scheme is applicable when portions of an image each have a homogenous

texture and one is concerned about reproducing only the general character of the texture

and not the specific gray levels at each pixel. In this case a white noise-driven linear

model can serve to characterize the image sufficiently so that only the parameters of

the model need to be retained. This is analogous to the analysis-synthesis method for

speech encoding [16]. In a practical application of the method, the image would first

be segmented and the boundaries of the regions would be coded and retained. Within

each region, a linear model could be formed for the image and the parameters (filter

coefficients and noise covariance) would be estimated and retained. The image would

be "decoded" by driving the filter for each region with white noise having the specified

covariance and thus reproducing the image texture within that region.

The second scheme is quite general and would apply to any image. It is analogous

to differential pulse code modulation (DPCM) in speech. A linear predictive filter

is derived and applied to the image. The coefficients for the filter and the actual

error residuals are retained and coded. Since there is usually great redundancy in a

multichannel image the error residuals will tend to have low dynamic range and can

Data courtesy of Rome Air Development Center, Griffiss AFB, N. Y.
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Figure 5.3 Segmentation of the tree-field color image
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a

(a) original color image

(b) segmentation

Figure 5.4 Color image of another area of

trees and field and segmentation
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therefore be coded with a fewer number of bits than the original image. The image is

reproduced by inverse filtering using the decoded error residual as input to the filter.

The method just described is most effective when the linear predictive filter is

well matched to the image being coded. Since one cannot expect that large general

images will be well-represented by a linear filtering model, it is advisable to divide the

image into small rectangular blocks and develop separate linear predictive filters for

each block. Since the image within each block is usually more homogenous, one can

expect that lower error residuals will be produced, resulting in more efficient coding.

DPCM methods have been developed and used in the coding of single images and

image sequences. Their use for multichannel images using the linear predictive models

discussed in this report would seem to be particularly effective.

5.3 Image Spectrum Analysis

Spectra for portions of the color image of Fig. 5.2 were computed using the

methods of Chapter IV. Only the red and green components were analyzed; these

were designated as channel 1 and and channel 2 respectively.

Two portions of the image were selected: a 64 x 64-pixel section (one quarter of the

image) in the lower left representing the field and a 64 x 64-pixel section in the upper

right representing the trees. The signal index n 1 was taken as the horizontal direction

and n2 was taken as the vertical direction. The images showed distinct differences in

their spectra which could be used as a basis for discrimination.

Fig. 5.5 shows the 2-D spectral components of the fields. The red, green, and

magnitude of the cross spectrum appear to be very similar. Power is distributed in the

middle and higher frequency ranges in the u^ direction and around zero frequency in

the w2 direction. This power distribution can be attributed to the somewhat evenly

spaced lines of green (perhaps some kind of plants) appearing in rows in the field. The
phase of the cross spectrum seems to oscillate between approximately 10° and -40° in

a more-or-less regular fashion.

Fig. 5.6 shows the estimated spectral component for the trees. Again, the red,

green, and magnitude of the cross spectrum are very similar. The power tends to

concentrate in a lower region of the Wi scale than the power for the fields with a peak

occuring around 7r/6 corresponding to the spatial placement of the trees. The phase

of the cross spectrum again varies between +10° and -40° but with somewhat milder

oscillations.

The concentration of power around o>2 = in the tree spectra at first seemed
strange. One would expect that the tree image would show similar intensity variations

in the horizontal and vertical directions and so the spectra should be more-or-less

similar in the <jj
y and w2 directions. On closer examination it was found that the
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image intensity variations for this data are not the same in both horizontal and vertical

directions. Fig. 5.7 shows typical slices of the image in the n : and n 2 directions (we

have examined several). The intensity exhibits rapid changes in the n x (horizontal)

direction but shows a very slow change in the n 2 (vertical) direction. This accounts for

the energy in the spectra being concentrated around u>2 — 0.

We can only guess a reason for this lack of symmetry in the tree image data. A
plausible explanation is that a slight blurring of the image occurred due to the motion

of the aircraft during the time at which the photograph was taken. This would have

resulted in a lack of higher frequency detail in the direction of motion.
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VI. Conclusions

This report developed analysis methods for multichannel 2-D random signals. Al-

though these signals could be considered as a special case of three-dimensional signals,

the multichannel nature of their origin provides them with special properties that are

not shared by multidimensional signals in general. A good example of this is the

concept of phase of the cross spectrum. This idea seems natural when considering

a multichannel 2-D signal but would have no counterpart in a 3-D analysis. While

there has been a large body of research for two and three-dimensional signals, analysis

methods specifically for multichannel 2-D signals have not heretofore been given much

consideration.

A substantial part of the work in this report concentrated on 2-D linear prediction

and autoregressive modeling. Concepts from the analysis of both single channel 2-D

signals and multichannel 1-D signals were generalized in this development.

An important application of the signal modeling arises in spectrum analysis. The

methods described in Chapter IV of this report showed howautoregressive models could

be used to estimate the entire spectral matrix for multiple 2-D signals. Estimates are

developed simultaneously for the autospectrum of each signal and the magnitude and

phase of the cross spectra between the signals in each channel. Spectrum estimation for

multichannel 2-D signals is the topic of a separate investigation [17] and many results

in addition to those reported here have already been developed.

The application of the analysis methods to image processing was discussed briefly.

Methods for image segmentation, image coding, and spectrum analysis were discussed

in this report. Many further image processing applications such as enhancement filter-

ing, target detection [18], and others seem possible.

While the report represents the results of a serious effort to develop and apply

the theory of multiple 2-D random signals, the work is by no means complete. Several

applications to image processing have already been mentioned and should be developed.

In addition, the analysis of some types of radar and array data seem to be important

applications of the spectrum analysis and modeling. Special sensors such as the laser

radar [19] where the data collected represents intensity, range, and doppler in two-

dimensions offer further opportunities for research.

By concentrating on linear prediction and AR modeling, we have looked at only

a single (although rich) aspect of the analysis of multichannel 2-D signals. Other

more general methods of modeling and estimation including pole-zero and noncausal

modeling were not fully developed. Representation of the signals in other 'coordinate'

systems by applying transformations between channels may lead to data reduction or

other advantages in various applications. We hope not only to continue our work in

this area but also, by publication of this report, to stimulate interest in the further

analysis of multichannel two-dimensional signals.
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Appendix A

Spectral Representation of Multichannel 2-D Random Processes

A stationary multichannel 2-D random process can be characterized in the fre-

quency domain by a 2-D spectral matrix. The spectral matrix is defined by Eq. (2.20)

of Chapter II and has the specific form

5a (wi,w2 )
=

5n(wi,w2 ) S12 [ui,u2 )

_ SM i (wi , Wa ) SM2 (u> x , u>2 )

Si* (wx.uia)

Sm m (wi , io2 ) _

(Al)

where 5tJ (u^ ,w2 ) is the 2-D Fourier transform of Rij (k l
,k2 ) the cross correlation be-

tween channels i and j. The spectral matrix is a periodic function of u x and u 2 with

period 2ir in each dimension and so it needs only to be considered only on the interval

— 7T < 'jj
1
< 7T and — TV < >jJn < 7T.

It follows from Eqs. (2.7a) and (2.11) that

5,(«i,W2 ) = S* (W!,W2 )

and thus the spectral matrix is Hermitian symmetric. In addition, since the compo-

nents Rxi (kx , k2 ) are positive definite functions, the diagonal terms 5it (a; 1 ,a;2) which

represent the 2-D power spectrum of each channel are non-negative. Cross spectral

terms S
,

,-y(w 1 ,w2 ) for i ^ j are complex in general. However, since Ri
j{k l ^k2 ) is real

the magnitude of S
i:i

is an even function and the phase is an odd function of u> 1 and

0J2 .

It is sometimes convenient to write the matrix of the squared magnitudes of the

terms of 5T as

[Sn

L o

o

>M M J

K 12 K1M

K Af !

KM

slx

'M M

where the middle quantity is called the squared coherency matrix. It's elements are the

magnitude squared coherency (MSC) between the [
th and j

th channels and are defined

as

|$y(wi,wa )|*
«iy(Wl,W2 )

(A.2)
Sii(u}l ,U}2 )Sjj(Ui i U2}

It follows from the properties discussed above that the matrix is real and symmetric,

that is, /c
i:; (wi

,

uj2 )
= K,ji{(jj x ,<jJ2 ). The MSC measures the correlation between the the

signals in channels i and j at frequencies uj 1 and o>2 . It is insensitive to spatial shifts

between the signals in the two channels. These effects are manifested as phase in the

cross spectrum.
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Appendix B
Examples of Correlation Matrices

This appendix gives examples of the correlation matrices

R = E [x xT
]

and

R' = E x'x'

for index-ordered and component-ordered representations of a stationary multichannel

2-D signal. The examples are given for Ni = 3,N2 — 4, and M — 2. The terms r^
appearing in the matrices are defined by

rf/ = E [x, (rii , n 2 )x : (ni
- k,n2 - l)\

That is, r
ki

is the element in the I
th row and the 7

th column of the matrix correlation

function R(k,l) (see Eq. 2.6a).

83-



R =

00 00 ' 0-1 0-1 ! 0-2 0-21 0-3 0-3
r r i r r ' r r < r r

11 12 1 11 12 1 11 12 I 11 12

00 00 1 0-1 0-1 1 0-2 0-2! 0-3 0-3
r r i r r . r r \ t r
21 22 | 21 22 21 22 I 21 22

-10 -10 1
-1-1 -1-1

1
-1-2-1-2-1-3-1-3

r r i
r r \ r r r r

11 12 | 11 12
i

11 12 11 12

-10 -10 1 -1-1 -1-1 1 -1-2 - 1-2 1

f
21

r
22 j

r
2 1

r
22

\

f
21

f
2 2

J

01 .Oil 00 00 1 0-1 0-1 I

11 12 ! 11 12 j 11 12 [

01 1
]

00 00 1 0-1 0-1'

2 1

r
22 i 21 22 ] 21 22 |

02 02 ! 01 01 i
1

f
11

r
i2 ! Si

f
12 i !

02 02 j
01 01

]

2 1 2 2 ' 21 22 |

1 j
!

03 03 ' 02 02 1 | 00 00
f
11

f
l2 ]

f
1l

r
i2 j 1

f
ll

r
i2

03 03 1 02 02 i
| 00 00

r
2 1

f
22 |

f
2 1

r
22

J j

r
2 1

r
22

10 10 1 1-1 1-1 l !

r
11

r
i2 !

r
il

f 12 |
I

r
,o

r
io

| r
i-i

r
.-i ,

21 22 I 21 22 I
1

00 00 1 0-1 3-1
j

r n r
i2 j

ru f
12 i

,00 ,00
\

,0-1,0-1 |

21 22 1 21 22 1

11 111 to 10 '
l

r
i,

r
i2 !

rn r
i 2 ;

r" rj! ! r
,0

r'° ! !212 2,2122, i

01 01 ] 00 00 |

r
il

r
i2 1 11 12 ]

01 01 ] 00 00 1

21 22 ' 21 22
J

i r" r
11

!

, 11 12

!r
n

r
11

!

, 21 22 •

1 j 00 00
j

rH r
i2

| f>0
00

J

21 22

10 10 ',

r
,,

r
, 2

; !

10 10 1 !

f2. f
22|

ii ii ! io 10 i

r
„

r
, 2 !

r
,.

r
,2

;

ii ii
;

,io ,io

21 22 , 21 22 1 •

1 11 11
J

1

i
Si f

12 •

i
r"r" ! !

!
21 22 |

Note: r
kl

= r:*'
1

'J Ji

The matrix is : Block Toeplitz but not block symmetric, has block Toeplitz

(but not block symmetric) blocks. The sub-blocks are

symmetric but not Toeplitz in general.

Figure B.l Index-ordered correlation matrix N=3,N=4,M = 2-
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Appendix C
Direct Product of Matrices

The direct product or Kronecker product of matrices is an important notational

operation in dealing with multidimensional signals. This appendix summarizes the

most important properties of the direct product without proof. For a more thorough

discussion see Ref. [20].

Given two matrices

A
ni '12 alP

aN i aN 2 WP J

and

B

bn b12 ... blQ

bLl bL2 ... bLQ J

the direct product B <g) A is defined as the partitioned matrix

Abu Ab12 ... AbiQ

B® A =

{B ® A)T = BT ®AT

tr(B <S>A) = tr(B)tr(A)

\B®A\ = \B\
N

\A\
L

(C.l)

(C.2)

(C.3)

AbL1 AbL2 ... AbLQ

If matrices A,C and B,D are conformable then some properties are as follows.

(B (8) A){D ®C) = BD®AC (CA)

If A and B are square matrices (N = P, L — Q) then

(C.5)

(C.6)

(C.7)

Further if A and B are nonsingular then the direct product is nonsingular and

(B®A)~ l = B- 1 &A' 1

(C.8)

Some further useful properties follow from the preceeding ones. If A, $ and 0,^
are the eigenvalue and eigenvector matrices for B and A respectively, then A® 0,$® ^
are the eigenvalue and eigenvector matrices for B ® A. That is

{B <g> A)($ (g> *) = ($ ® *)(A ® 0) (C.9)
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To state this another way, if 4>i and ijj
:

are eigenvectors of B and A corresponding

to eigenvalues A; and Oj then fa <g> t/>
;

is an eigenvector of B ® A corresponding to

eigenvalue A.0.,. That is,

[B <g> A) {fa ® ijjj) = XJ : [fa ® 0y) (CIO)

In addition if A and B are symmetric with a modified Cholesky decomposition

A = GDGT

and

B = G'D'G'
T

where G and G' and unit lower triangular and D and D' are diagonal, then

(B®A) = (G
1 8 £)(£>' <8> £>)(£' ®G')T (Cll

Some further fundamental properties and cautions should be observed. It is clear

from the definition that the direct product is associative, i.e.,

(C<g>5)<g> A = C® (£<g> A) (C12)

In addition, the operation is distributive over addition:

(B + C)®A = B®A + C®A (C13)

A<g)(£ + C) = .4®5 + ,4®C (C14)

However, the direct product is not commutative (in general B ® A ^ A <g) B) and it is

not distributive over ordinary matrix multiplication.
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Appendix D

Multichannel Levinson Recursion and Burg Algorithm

Multichannel Levinson Recursion (1-D)

The multichannel Levinson recursion (also called the Levinson-Wiggins-Robinson

(LWR) algorithm) deals with a linear prediction problem of the form (3.24) and solves

the Normal equations (3.26). The associated backward prediction problem is

N,-l

kn- Ni + 1 £ K'' in - N x + 1 + i
(3.24)'

»= i

and leads to the Normal equations'

Ra'Px
= R

a {

„< p i
-

1

(3.26)'

where a'
1

' has a form analogous to (3.25). The recursion is specified by the following

set of equations.

A, = [RT (1) Rr
(2) ... R^)]^

A; =Af=[R(l) R(2) ... RMK-.x

{D.la)

(D.lb)

r.-^EU)-
1 ^

a.

r :
= e-A a;

r

~<*i-i

.^-i.

«4-i

A-*.

e^e,., (i-r;r
t )

E'
i
= e;_

3

(i--r,r;)

r,

r:

(£>-.2a)

(D.26)

(£>.3a)

(25.36)

(£>.4a)

(DAb)

Note that ^_ denotes second level block reversal.
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The terms I\ and T' are the forward and backward reflection coefficient or partial cor-

relation matrices. The term A, (A-) can be interpreted as a cross correlation between

the forward (backward) prediction error and the one unit delayed, backward (forward)

prediction error. Eqs. (D.l) - (D.4) are applied recursively beginning with i — \ and

ending with i = Px
— 1.

Multichannel Burg Algorithm

This multichannel form of the Burg algorithm was developed by Nuttal [10] and

Strand [11]. The procedure centers around estimating the terms A, and A[ of the

multichannel Levinson recursion directly from the data. Then the rest of the equations

(D.2) - (D.4) can be applied without modification.

Define the forward and backward error terms for the 1-D multichannel linear pre-

diction problem as

fit =*n ~*n ="JZ [D.Sa)

e'<*> =xn . l+1 -C, + 1
= «fx (D.5b)

From these definitions and Eqs. (D.3) it can be seen that the errors satisfy the recursion

fli." =fii,'-"-rri"-" (D.6a)

tf'-iu't'.-rsVl. (0-66)

The recursion is sustained by defining

D = ^£el."(eL")
r

P.7a)
P n= 1

B = }r£ g""(6"")
T

(D -76)
P n=l

,P n=l

where NP is the number of points in the data record minus the length of the filter.

The matrix A, is then obtained as the solution of the bilinear equation

QA.+A.Q =C 3 (D. 8)

where

C 1 =(E;.)-
1 B (D.9a)

C 2 = (E,)-
X D (D.9b)

C 3 = -2G (D.9c)
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There are several approaches to solving (D.8). One approach is to transform A,- into

an equivalent vector representation by concatenating rows of the matrix into the MN±-
dimensional vector 6. The matrix C3 is likewise transformed to a vector c 3 . Equation

(D.8) can then be written as

Q6 = c 3 (D.10)

where

Q = Cx ®IW +IM ®CT
2 {DM)

where Iw is the M x M identity matrix. Eq. (D.10) can then be solved for 6.
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Principal Symbols

x(rai,n2 )
Multichannel 2-D signal

xm {n l , n2 )
Signal component

x,

x

n Signal vectors - index ordering

x',xm ,x™ Signal vectors - component ordering

X,Xm Signal matrices

AT
. ,BT, Coefficients of difference equation, filter coefficients

H{li,l2 )
Impulse response

Hz (zi,z2 )
System function (z transform of impulse) response

Hw (uji,u2 )
Frequency response (Fourier transform of

impulse response)

H, H(n
x )

Matrix representation of impulse response

M number of channels

m Mean for signal x

Rx (k 1 ,k2 ) , Rxy {k 1 ,k2 )
Correlation functions

Kx (k 1 ,k2 ), Kxy (k l ,k2 )
Covariance functions

Sx [<jj 1 ,u2 ),SX y(u 1 ,w2 )
Power density spectra

k,x (u> i , u2 )
Coherence function

m Mean vector , index ordering

m' Mean vector, component ordering

R, R(n) Correlation matrix index ordering

R',Rni „ 2
,R£ iri2

Correlation matrix,

component ordering

E e Multichannel 2-D prediction error covariance matrix
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